لم تقم بتسجيل الدخول, بعض الخصائص غير مفعلة.
أنت في المستوى   المبتدئ المتوسط المتقدم    نتيجتك: 0    زمن الاجابة:
  0   0     ترتيبي الأسبوعي 0
 

 
اكتب معادلة القطع الزائد على الصورة القياسية ثم حدد خصائصه    y 2 9 x 2 54x10y92=0 MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaiMdacaWG4bWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaGynaiaaisdacaWG4bGaeyOeI0IaaGymaiaaicdacaWG5bGaeyOeI0IaaGioaiaaiIdacqGH9aqpcaaIWaaaaa@462E@    
الاتجاه المركز الرأسان البؤرتان خطا التقارب
رأسي (3,5) MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaiodacaGGSaGaaGynaiaacMcaaaa@3A17@ (3,11),(3,−1) MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaiodacaGGSaGaaGyoaiaacMcacaGGSaGaaiikaiabgkHiTiaaiodacaGGSaGaaGymaiaacMcaaaa@3F39@ (3,5+ 40 ),(3,5 40 ) MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaiodacaGGSaGaaGynaiabgUcaRmaakaaabaGaaGinaiaaicdaaSqabaGccaGGPaGaaiilaiaacIcacqGHsislcaaIZaGaaiilaiaaiwdacqGHsisldaGcaaqaaiaaisdacaaIWaaaleqaaOGaaiykaaaa@4442@ y5=±3(x+3) MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabgkHiTiaaiwdacqGH9aqpcqGHXcqScaaIYaGaaiikaiaadIhacqGHRaWkcaaIZaGaaiykaaaa@3FF4@
الاتجاه المركز الرأسان البؤرتان خطا التقارب
أفقي (3,5) MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaiodacaGGSaGaaGynaiaacMcaaaa@3A17@ (1,5),(7,5) MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaaigdacaGGSaGaaGynaiaacMcacaGGSaGaaiikaiabgkHiTiaaiEdacaGGSaGaaGynaiaacMcaaaa@3E4E@ (3,5),(9,5) MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaaiodacaGGSaGaaGynaiaacMcacaGGSaGaaiikaiabgkHiTiaaiMdacaGGSaGaaGynaiaacMcaaaa@3E52@ y5=± 1 2 (x+3) MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabgkHiTiaaiwdacqGH9aqpcqGHXcqSdaWcaaqaaiaaigdaaeaacaaIYaaaaiaacIcacaWG4bGaey4kaSIaaG4maiaacMcaaaa@40BF@
الاتجاه المركز الرأسان البؤرتان خطا التقارب
رأسي (3,5) MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaiodacaGGSaGaaGynaiaacMcaaaa@3A17@ (3,11),(3,1) MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaiodacaGGSaGaaGymaiaaigdacaGGPaGaaiilaiaacIcacqGHsislcaaIZaGaaiilaiabgkHiTiaaigdacaGGPaaaaa@40D9@ (3,9),(3,1) MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaiodacaGGSaGaaGyoaiaacMcacaGGSaGaaiikaiabgkHiTiaaiodacaGGSaGaaGymaiaacMcaaaa@3F39@ y5=±2(x+3) MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabgkHiTiaaiwdacqGH9aqpcqGHXcqScaaIYaGaaiikaiaadIhacqGHRaWkcaaIZaGaaiykaaaa@3FF4@
الاتجاه المركز الرأسان البؤرتان خطا التقارب
أفقي (3,5) MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaiodacaGGSaGaaGynaiaacMcaaaa@3A17@ (3,5),(9,5) MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaiodacaGGSaGaaGyoaiaacMcacaGGSaGaaiikaiabgkHiTiaaiodacaGGSaGaaGymaiaacMcaaaa@3F39@ (3+ 40 ,5),(3 40 ,5) MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaiodacaGGSaGaaGynaiabgUcaRmaakaaabaGaaGinaiaaicdaaSqabaGccaGGPaGaaiilaiaacIcacqGHsislcaaIZaGaaiilaiaaiwdacqGHsisldaGcaaqaaiaaisdacaaIWaaaleqaaOGaaiykaaaa@4442@ y5=±3(x+3) MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabgkHiTiaaiwdacqGH9aqpcqGHXcqScaaIYaGaaiikaiaadIhacqGHRaWkcaaIZaGaaiykaaaa@3FF4@
            
0