X
يوجد سباق مفتوح, هل تريد الانضمام ؟
الصف الثالث ثانوي
القطوع المخروطية
القطوع الزائدة
لم تقم بتسجيل الدخول, بعض الخصائص غير مفعلة.
أنت في المستوى
المبتدئ
المتوسط
المتقدم
نتيجتك:
0
زمن الاجابة:
0
0
ترتيبي الأسبوعي
0
اكتب معادلة القطع الزائد على الصورة القياسية ثم حدد خصائصه
:
y
2
−
9
x
2
−
54
x
−
10
y
−
92
=
0
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaiMdacaWG4bWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaGynaiaaisdacaWG4bGaeyOeI0IaaGymaiaaicdacaWG5bGaeyOeI0IaaGioaiaaiIdacqGH9aqpcaaIWaaaaa@462E@
الاتجاه
المركز
الرأسان
البؤرتان
خطا التقارب
رأسي
(
−
3
,
5
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaiodacaGGSaGaaGynaiaacMcaaaa@3A17@
(
−
3
,
11
)
,
(
−
3
,
−1
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaiodacaGGSaGaaGyoaiaacMcacaGGSaGaaiikaiabgkHiTiaaiodacaGGSaGaaGymaiaacMcaaaa@3F39@
(
−
3
,
5
+
40
)
,
(
−
3
,
5
−
40
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaiodacaGGSaGaaGynaiabgUcaRmaakaaabaGaaGinaiaaicdaaSqabaGccaGGPaGaaiilaiaacIcacqGHsislcaaIZaGaaiilaiaaiwdacqGHsisldaGcaaqaaiaaisdacaaIWaaaleqaaOGaaiykaaaa@4442@
y
−
5
=
±
3
(
x
+
3
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabgkHiTiaaiwdacqGH9aqpcqGHXcqScaaIYaGaaiikaiaadIhacqGHRaWkcaaIZaGaaiykaaaa@3FF4@
الاتجاه
المركز
الرأسان
البؤرتان
خطا التقارب
أفقي
(
−
3
,
5
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaiodacaGGSaGaaGynaiaacMcaaaa@3A17@
(
1
,
5
)
,
(
−
7
,
5
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaaigdacaGGSaGaaGynaiaacMcacaGGSaGaaiikaiabgkHiTiaaiEdacaGGSaGaaGynaiaacMcaaaa@3E4E@
(
3
,
5
)
,
(
−
9
,
5
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaaiodacaGGSaGaaGynaiaacMcacaGGSaGaaiikaiabgkHiTiaaiMdacaGGSaGaaGynaiaacMcaaaa@3E52@
y
−
5
=
±
1
2
(
x
+
3
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabgkHiTiaaiwdacqGH9aqpcqGHXcqSdaWcaaqaaiaaigdaaeaacaaIYaaaaiaacIcacaWG4bGaey4kaSIaaG4maiaacMcaaaa@40BF@
الاتجاه
المركز
الرأسان
البؤرتان
خطا التقارب
رأسي
(
−
3
,
5
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaiodacaGGSaGaaGynaiaacMcaaaa@3A17@
(
−
3
,
11
)
,
(
−
3
,
−
1
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaiodacaGGSaGaaGymaiaaigdacaGGPaGaaiilaiaacIcacqGHsislcaaIZaGaaiilaiabgkHiTiaaigdacaGGPaaaaa@40D9@
(
−
3
,
9
)
,
(
−
3
,
1
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaiodacaGGSaGaaGyoaiaacMcacaGGSaGaaiikaiabgkHiTiaaiodacaGGSaGaaGymaiaacMcaaaa@3F39@
y
−
5
=
±
2
(
x
+
3
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabgkHiTiaaiwdacqGH9aqpcqGHXcqScaaIYaGaaiikaiaadIhacqGHRaWkcaaIZaGaaiykaaaa@3FF4@
الاتجاه
المركز
الرأسان
البؤرتان
خطا التقارب
أفقي
(
−
3
,
5
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaiodacaGGSaGaaGynaiaacMcaaaa@3A17@
(
3
,
5
)
,
(
−
9
,5
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaiodacaGGSaGaaGyoaiaacMcacaGGSaGaaiikaiabgkHiTiaaiodacaGGSaGaaGymaiaacMcaaaa@3F39@
(
−
3
+
40
,5)
,
(
−
3
−
40
,5)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaiodacaGGSaGaaGynaiabgUcaRmaakaaabaGaaGinaiaaicdaaSqabaGccaGGPaGaaiilaiaacIcacqGHsislcaaIZaGaaiilaiaaiwdacqGHsisldaGcaaqaaiaaisdacaaIWaaaleqaaOGaaiykaaaa@4442@
y
−
5
=
±
3
(
x
+
3
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabgkHiTiaaiwdacqGH9aqpcqGHXcqScaaIYaGaaiikaiaadIhacqGHRaWkcaaIZaGaaiykaaaa@3FF4@
0